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This paper presents a model for author-paper networks, which is based on the assumption that authors are
organized into groups and that, for each research topic, the number of papers published by a group is based on
a success-breeds-success model. Collaboration between groups is modeled as random invitations from a group
to an outside member. To analyze the model, a number of different metrics that can be obtained in author-paper
networks were extracted. A simulation example shows that this model can effectively mimic the behavior of a
real-world author-paper network, extracted from a collection of 900 journal papers in the field of complex
networks.
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I. INTRODUCTION

This paper presents a realistic bipartite model of author-
paper networks, a phenomenon that has been studied since
the 1920sf1g. The proposed growth model is based on mod-
eling groups of authors using a “nested” Yule processf2g,
and further models “weak ties” among author groups as a
Watts-Strogatz small world processf3g. The full bipartite
representation of the network allows construction of many
meaningful metrics to evaluate the validity of the proposed
model against actual author-paper networks. Using a collec-
tion of 900 papers covering the topic of complex networks,
we will show that the proposed model faithfully reproduces
the characteristics of six metrics:s1d authors per paper dis-
tribution, s2d papers per author distributionsLotka’s lawd, s3d
coauthor clustering coefficient distribution,s4d coauthorship
per author pair distribution,s5d collaborator per author dis-
tribution, ands6d minimum path between author pairs distri-
bution.

The model and the validation metrics presented in this
paper are innovative when considered against previous mod-
els of Lotka’s law or models of author collaboration net-
works. Lotka’s law models deal with single authors without
modeling collaboration, while collaboration models cannot
describe Lotka’s law and single authors. Both types of mod-
els are usually validated against simple power-law link de-
gree distributions: papers per author for testing Lotka’s law
models, or collaborators per author for testing author col-
laboration models. Power-law link degree distributions are
easy to duplicate using several types of processesf4g. Be-
cause of this, such simple models offer little insight into
underlying processes that generate author-paper networks.

The proposed model, which deals with groups of authors
rather than single authors, reveals the importance of research
workgroupssauthor groupsd in author-paper networks. The
model indicates that publication by author groups is driven
by a success-breeds-successsSBSd process, and further, that

authorship by single authors within these groups is a SBS
process as well. Yet, surprisingly, intergroup collaboration,
i.e., weak ties, appears to be well modeled by a small world
network of random interlinkages.

Bipartite author-paper networks are formed by two types
of entities, the authors and papers, and the authorship links
between them. There exists much analysis in the literature on
the features of real-world author-paper networks. The first of
these analyses was presented by Lotkaf1g. His analysis,
which contained a data set of journal articles compiled by
hand, showed that the distribution of the number of papers
per author follows a zeta distribution, a pure power law, with
an exponent of approximately 2. This observation is cur-
rently referred to as Lotka’s law of scientific productivity. A
large number of other studies reinforced the power-law con-
cept for the number of papers per author distribution, espe-
cially when considering only the tail of the distribution.
These studies show that the observed exponent varies with
the data setf5,6g.

The observation of this distribution is very important, but
it does not explicitly provide an insight into network dynam-
ics. For this, a dynamic growth model is needed. Of the
dynamic models in the literature, almost all are evaluated
using crude comparisons to simple paper per author distribu-
tions and ignore other important metrics, such as clustering
coefficient distribution or collaborator distribution. A com-
plete and useful model must be able to mimic the real be-
havior of the author-paper network across many important
network metrics.

This paper provides a model for the growth of author-
paper networks and a step-by-step presentation of the impor-
tant features of a real-world author-paper network that a
model has to mimic. The proposed model, although very
simple, approximates well all these features, thus building
confidence in the validity of the model and the insight that
the model provides into the actual dynamics of real-world
author-paper networks.

II. AUTHOR-PAPER NETWORK MODELS

A number of different bipartite author-paper models exist
in the literature. These models attempt to explain the process
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generating the power-law distribution of the papers per au-
thor distribution. They are fundamentally different from the
usual preferential connection models, such as the Barabási-
Albert model f4,7g, because they model bipartite networks,
in which one partition contains all authors and the other all
papers. Although it is possible to transform a bipartite net-
work into a simple graph by projectionf8,9g, this transfor-
mation removes the ability to calculate metrics to evaluate
the validity of the model.

In the model presented by Newmanet al. f10g, the goal
was to enable the generation of any degree distributions,
such as Poisson, exponential, and power-law, for simple, di-
rected, and bipartite graphs. The proposed method is very
general but it is mainly focused on predicting three features:
the average degree, the clustering coefficientf3g, and the
degree distribution of the projected graph. The model is able
to effectively predict the features for a network of company
directors; however, it fails to approximate the features of
authorship networks.

Huber f11g presents a model of authors to predict five
different features: the rate of production, career duration,
randomness, Poisson-ness distributionsrelated to the vari-
ance of the author’s productivity through timed, and the dis-
tribution of papers per author. Huber’s model is complex and
involves distributions of career durationssassumed exponen-
tiald and Poisson distributed counts of papers, based on the
author’s productivity. Although this model predicts very well
the features of interest, its major drawback is that it does not
model the existence of coauthors. In the model, each author
is “evolved” individually. A useful model must have the abil-
ity to predict collaboration patterns.

Recently, Börneret al. f12g presented a model in which
the author network and the reference network evolve simul-
taneously. This study is an important acknowledgment that
multiple interconnected networks exist in collections of jour-
nal papers, and that the challenge of modeling such paper
collections is to find the basic rules of author behavior that
produce the growth characteristics of the multiple intercon-
nected networks contained in them. Börneret al.’s main goal
was to predict the evolution of the number of papers, au-
thors, and citations in a large and heterogeneous collection of
journal articles, such as all of the papers published in the
Proceedings of the National Academy of Sciencefrom 1981
to 2001. The paper includes a detailed set of proposed author
behavioral rules and predicts gross measures of author, pa-
per, and reference growth well, but the study does not dis-
cuss detailed metrics of network characterization.

One major disadvantage of all models found in the litera-
ture is the inability to predict most of the features of real-
world networks. The prediction of only one or two features
greatly weakens the usefulness of such models as models of
real-world behavior.

III. PROPOSED GROUP-BASED YULE MODEL

A Yule model is a preferential connection process first
proposed as a model of biological evolution by Yule in 1924
f2g. Our model uses a Yule process to model the growth of
author groups in the author-paper network. The proposed

model is based on the observation that usually authors are
part of a research group. Most of the papers they write are
coauthored with other members of their group. Collaboration
between research groups happens, but multigroup papers are
far less common than in-group papers.

A diagram of the model can be seen in Fig. 1. When a
paper is created there is a probabilitya that a new author
group is created withNg all new members, whereNg is a
constant. The number of authors of the paper,Nsld, is the
first author plus a Poisson-distributed number of additional
authors. This 1-shifted-Poisson distribution has parameterl.
The probability distribution of the 1-shifted-Poisson,pspskd,
is given in Eq.s1d:

pspskd =
lsk−1de−l

sk − 1d!
, k = h1,2,…j, s1d

wherek is the number of authors andpspskd is the probability
of a paper havingk authors.

If a new group is not created, an existing author group is
chosen using the following probability distribution:

pgsqd =
q

Np
, s2d

where q is the number of papers that this group has pub-
lished,Np is the total number of papers in the network, and
pgsqd is the probability of an existing group authoring a pa-
per. This is the Yule process, which favors groups in propor-
tion to the number of papers they have published.

When an existing group is selected, it is necessary to se-
lect the authors within the group that author the paper. The
number of authors of the paper is modeled as a 1-shifted
Poisson distribution. In order to model interconnection be-
tween groupss“weak ties”d, for each author, there is a prob-

FIG. 1. Diagram of the proposed group-based Yule model for
author-paper networks.
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ability b that this author is from another group. If so, the
author is selected randomly from among all authors in the
network, whether they have authored a paper or not. If an
outside author is not chosen, an author from the selected
group is chosen. This selection is done by another preferen-
tial connection process, modified to allow selection of au-
thors that have never published a paper. The probability of
selecting an authori in the group is

pasid =
ki + 1

o kj + Ng

, s3d

whereki is the number of papers written by authori, okj is
the sum of the number of authorships among the authors in
the group, andNg is the number of authors in the group. This
is a preferential attachment process which favors authors by
the number of papers they have previously published.

The paper creation cycle of Fig. 1 repeats until the desired
number of papers is added to the network.

In summary, this model has four parameters: the group
sizeNg, assumed always constant for this simple model; the
probability of creating a new group,a; the probability of
choosing an author from another group,b; and the Poisson
parameter that defines the distribution of number of authors
per paper,l. Given a data set to be modeled, it is easy to
analytically determinea andl.

The following section presents methods for obtaining
these parameters to model a real-world network. Methods for
correctly validating the model are also presented, by analyz-
ing network metrics. It is important to note that the proposed
model assumes that the groups are working on a single re-
search specialty. For modeling multiple research specialties
at once it would be necessary to restrict intergroup publish-
ing between “related research,” but this is beyond the scope
of this study.

IV. EXAMPLE

The example is a collection of papers covering the spe-
cialty of complex networks. This data set, collected from the

Science Citation Index, contains 900 papers, 1354 authors,
and 2274 authorships linking authors to papers. Despite not
being a large data set, its size is compatible to the assumption
of the single specialty in which the proposed model operates.
Moreover, being a rather new specialty, there are very few
inner specialties that would need to be manually removed to
fit with these assumptions.

The data set was obtained by obtaining all papers from
ISI’s Web of Science that satisfied the following queries:sad
cites references withsauthor=BARABASI-AL AND year
=1999 AND journal=SCIENCEd; sbd cites references with
sauthor=WATTS-DJ AND year=1998 AND journal
=NATUREd; scd cites references withsauthor=ALBERT-R
AND year=2000AND journal=NATUREd; sdd cites refer-
ences with sauthor=ALBERT-R AND year=2002 AND

journal=REV-MOD-PHYSd; sed cites references with
sauthor=DOROGOVTSEVAND year=2002d.

The queries above yielded 832 papers. Additional papers
were added manually from a list of papers citing additional
authors NEWMAN-ME and PASTORSATORRAS-R, col-
lected previouslyf13g.

The first parametera is obtained by determining the prob-
ability of new group creation. This probability is estimated
using a paper-by-paper pass through the network to deter-
mine the fraction of papers that appeared with a completely
new set of authors.

The parameterl is calculated by dividing the total num-
ber of authorships by the number of papers and subtracting 1
s1-shifted Poisson estimated. The number of authors per
group,Ng, was chosen heuristically as 20, which is assumed
as the upper limit of the number of researchers that can ef-
ficiently interact as a group.

The “weak tie” parameterb is estimated by matching the
coauthorship distributionsthe distribution of the number of
times pairs of authors have coauthoredd by trial and error.

FIG. 2. Frequency distribution comparison for the number of
authors per paper between the actual distribution and the simulated
distribution.lactual=1.527,lsim=1.651.

FIG. 3. Frequency distribution comparison for the number of
papers per author, Lotka’s law, between the actual distribution and
the simulated distribution. The actual distribution has a power-law
exponent ofg=2.544 and the simulated distribution hasg=2.770.
The inset shows the model-predicted paper per author distribution,
which fits a zeta distribution.
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The matching of the coauthorship distribution will be ex-
plained below.

The parameters estimated for the example network are

â=0.33,b̂=0.1, l̂=1.527, andNg=20.
To validate the model, several metrics are used to com-

pare model simulations to the actual network. The following
metrics are used for comparison.

Authors per paper. The distribution of the number of au-
thors per paper. As discussed above, this is simulated as
1-shifted Poisson distributed. Note in Fig. 2 the close match
of actual to simulated frequencies, further confirming the
1-shifted Poisson assumption presented. This metric is im-
portant because it relates directly to the number of partici-
pants on projects within the group, an important measure of
interaction within workgroups.

Papers per author distribution (Lotka’s law). This is the
distribution of the number of papers that each author pub-
lished. Note in Fig. 3 the close match of simulated frequen-
cies to actual frequencies for this metric. This metric is im-
portant because it measures the distribution of productivity
among authors in a specialty, modeling the formation of core
groups of researchers in a specialty. The inset in Fig. 3 shows
the model-predicted paper per author distribution, generated
by gathering statistics from 1000 simulations. The predicted
distribution certainly models Lotka’s law, producing an ex-
cellent fit to a zeta distribution with an exponent of 2.77.
Fitting was done using maximum likelihood expectation and
the fit passed a Kolmogorov-SmirnovsKSd test f14g at an
observed significance levelsOSLd of 10%,OSL,1%, T
=0.0031,N=1.33106. The KS is a commonly used good-
ness of fit test whose test statistic is based upon the maxi-
mum deviation of the cumulated experimental distribution
from the proposed distribution. For details, please seef15g.

Coauthor clustering coefficient distribution. The cluster-
ing coefficient was first introduced by Watts and Strogatzf3g
as a scalar mean clustering coefficient. However, when ob-
serving the distribution of the clustering coefficients, a very
interesting characteristic is found in coauthor networks: a
large spike at unity. Therefore, it is imperative to use the
distribution as the metric rather than the mean, which effec-

tively hides unity spike behavior. For example, although au-
thor networks usually have a mean clustering coefficient of
0.8, comparable to that of citation networksf4g, the distribu-
tion of the coauthor network clustering coefficient is funda-
mentally different from the distribution of clustering coeffi-
cient in citation networksf16g. Newmanet al. discuss this
distribution in f10g and model it, with limited success. Note
in Fig. 4 that simulation using the proposed model fully
mimics the distribution of the clustering coefficient. This
metric is important because it measures the tendency of au-
thors to work in local groups.

Collaborator distribution. The distribution of the number
of unique coauthors to each author in the network. Newman
et al. attempted to model this distribution with only partial
successf10g. Note the close match of the simulated to actual
coauthorship frequencies in Fig. 5. This metric is important
because it measures the tendency of authors to work with
other authors.

FIG. 4. Frequency distribution comparison of the clustering co-
efficient.Cactual=0.867,Csim=0.881.

FIG. 5. Frequency distribution comparison of the number of
collaborators per author.mactual=3.15,msim=2.82.

FIG. 6. Frequency distribution comparison of the coauthorship
distribution, showing the number of papers coauthored by each pair
of authors.

GOLDSTEIN, MORRIS, AND YEN PHYSICAL REVIEW E71, 026108s2005d

026108-4



Coauthorship distribution. This is the distribution of the
number of common papers between pairs of authors, across
all author pairs in the network. Figure 6 shows that the pro-
posed model matches the actual distribution well. This is an
important metric because it measures the tendency of pairs of
authors to repeatedly work together on individual projects.

Minimum distance distribution. Figure 7 shows the distri-
bution of the minimum distance between pairs of authors in
the network, i.e., the minimum length of the path of coau-
thorships between them. This metric is important because it
measures the tendency of groups to invite outside workers
onto projects.

For additional discussions of network metrics applicable
to author-paper networks, see Newmanf6g, who discusses
several of the metrics used here.

All metrics shown above present a close match between
the real-world network and the model simulation. As an ex-
ception, the minimum path distribution shows a fair amount
of deviation, but this distribution appears to be unstable and
tends to change greatly from simulation to simulation. The
actual minimum path length distribution is probably unstable
as well, but investigation of that hypothesis is outside the
scope of this paper.

V. CONCLUSIONS

This paper proposes a very simple model for author-paper
networks by introducing the concept of preferential attach-
ment of group authoring of papers. Adding this simple con-
cept to a Yule-type process it was possible to obtain very
similar behavior using multiple metrics, when comparing to
a real-world network. This suggests that, in the real world,
the modeling of research groups is essential to understanding
the dynamics of paper authoring. Analysis of single authors
or random connections between authors, as proposed by pre-
vious researchers, does not provide a reasonable model of
reality.

Another important conclusion drawn from this model is
that “weak ties” between groups are well modeled by simple
random intergroup coauthorships. This implies that group
collaboration does not actually work by establishing formal
long-term commitments, but by single collaborations, possi-
bly from informal meetings at conferences, or e-mail discus-
sion lists. Multiple collaboration with outside groups may
happen in real life, but such collaborations are uncommon
and do not affect the gross characteristics of the network.
This model further implies that outside collaboration is not
dependent on the amount of work that the outside person has
done in the field.

Note that while there is local preferential connection of
authors within groups, and global preferential connection of
the groups themselves, the intergroup linkage approximates a
Watts-Strogatz small world process. The model here is really
a hybrid, being a “nested preferential connection, global
small world” model.

We also showed that using only a single metric, such as
the distribution of papers per author, or a single mean value
for the clustering coefficient, incompletely validates a model.
Analyzing multiple metrics allows validation against specific
behaviors that fully characterize the network.

It is important to note that this model only accounts for
the behavior of authorships in a collection of papers. To ac-
tually understand the nature of collections of journal papers
it would be necessary to implement and discuss the interac-
tion of this author-paper bipartite network with the other
bipartite networks in the paper collection, such as the paper-
reference networkf16–18g, paper-journal networksBrad-
ford’s lawd f19g, and paper-term networksZipf’s lawd f19g.
The analysis of their complex interaction will certainly shed
light on a large number of open questions regarding the
growth and mapping of information structures.
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